
AD-AO95 973 MARYLAND UNIV COLLEGE PARK COMPUTER VISION LAB F/6 9/2

APPROX1IMATION OF POINT-SET IMAGES BY PLANE CURVES. (U)

DEC A0 P R THRIFT AFOSR-77-3271

UNCLASSIFIED TR-986 AFOSR-TR-81-0141 NL



!FOSR-TRR- 1- 0 14T

tt

COMPUTER SCIENCE

TECHNICAL REPORT SERIES

DTIC
Ii;ELECTE0

-18S6-AW5 1981"
;I 

A
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND
20742



TR-986 December 1980
AFOSR-77-3271

APPROXIMATION OF POINT-SET IMAGES
BY PLANE CURVES

I

Philip R. Thrift

Computer Vision Laboratory
Computer Science Center
University of Maryland
College Park, MD 20742

ABSTRACT

A transform method is presented for detecting elements
of a parametric family of curves in noisy point-set images.
Local maxima of the transform in the parameter space will
correspond to best approximations to parts of the data. The
cases of linear, circular, and parabolic approximations are
discussed.
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§U. Introduction

Statistical geometry is the study of how to restore pure

geometric objects when we can only observe deformed versions

of them. The case with which this paper is concerned is when

the pure geometric objects are finite subsets of curve segments

from a given parametric family. If we call the pure image I,

then D(I), the deformed version, consists of a (random) point-

subset of I with additive noise superimposed, with perhaps

an additional point-process as background noise.

In this paper we shall only present an approximation

method, similar to the Hough transform as described in [2]

and to the chamfer matching in [1]. Additional Hough transform

references are in [4]. Distributional considerations will be

examined later. The general problem, which covers a wide range

of distributional assumptions, appears below.

We suppose QcR d is some parameter space with F = {{(x,y):

f( ,x,y) = 0, (x,y) R2 1: . } a family of curves in R2 para-

meterized by . Let (xlYl),...,(xNYN) be a set of N points

of R that arise as a deformed version of a set of segments of

M curves parameterized by i,...,'M of F. We shall assume that

(xi,Yl),...,(xNY N ) arises as a deformation of a point-process

realization of the segments, plus additive noise.

Let denote a curve of family F (we identify a curve with

its parameter). A segment I of F of length L is a regular curve

segment [3] of E parameterized by arc-length. That is, there

is a function a: [0,L])R 2 satisfying



(1) f(C ,SE), 2 s) = s 10 ,1]

(2) a is one-to-one, except perhaps at the end points.

(3) The following identity holds:

~d1a 0 (s)Ids 0 a 1 .

Let P = {s <S2<... <s NI be a point-process realization of the

interval [0,L] consisting of N points, with an interpoint dis-

tance A that is a random variable with a known distribution.

Let el,...,eN be independent noise random variables with values

2 2in R2 , each component having mean 0 and variance a2. Then

D (I) ={(xi,Yi) =(l (si ), 2 (si))+ei i=l,...,N}

is the randomly deformed version of the image I. The above con-

struction is extended to a set of M segments from F. In the

rest of this paper we assume no background noise.

In Section 2 we discuss the case of fitting a single curve

to a data set based on simple least-squares minimization. Although

this direct method of fitting a single curve can be extended to

fitting several curves simultaneously, difficulties are presented

in that the number of curves present in an image is usually un-

known, and that the optimization solution is complicated. In

Section 3 we define a more robust procedure than least-squares

fitting in which the parameter space is searched for local maxima

after a transform method similar to the Hough transform. Finally

the computations needed to carry out the procedure for linear,

parabolic, and circular segments are given. We shall not consider

in this paper methods for searching for local extrema.



§2. Fitting a single curve segment

For fitting a single curve segment of to a set of data

points {(xl,yl),.•,(xNyN)} we can consider the least-squares

minimization problem N

min Z [(xi-ai) 2+(yi-oi) 2 ](al (l l) (N'aN) il

with E

f( ,i, i) = 0 i=l,...,N.

This problem is solved by fixing E and finding the solution

( )S*( )) that minimizes (xi- a) +(yi- i) with

f( aci'Sia) = 0 i=l,...,N. By the Lagrange Multiplier Method

we get the "normal equations" for ai*C ) ):

ai-xi+Xf ( i ,0iSi) 0- ,

Si-Yi+f( , i i =0 . <

f( , i Si) = 0 . .. ..

The above minimization problem is now reduced to , .

mm~ (x~.*~~ 2 2min 1 (x i-i*( +(yi-$i*( ))

EEO i=l '

a-search for the minimum in parameter space.

In some cases solution of the normal equations is difficult,

and the linear approximation to the constraints of the minimiza-

tion problem is valid. We consider the linear approximation

f ( ,x i+6 i,Y y+ Ci ) --

f( ,xi )+V, f(,xy)(

i~, .. N.



If ~a =x.+6.l fi = yi+t:. are within the range of the above

approximation, then the above problem may be approximated by

N 2
min E (6. 4-+C.

with Ct

( 6 
9
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§3. Fitting several curve segments simultaneously

In this section we consider a transform from the data

set to the parameter space Q in which search for local extrema

allows one to extract the best fitting curve segments from F.

As examples of the computation involved, we consider three cases:

linear, parabolic, and circular segments. Note that multiple

segments from the same curve are allowed. Attention is paid

to the variance a2 of the noise as well as the distribution of

A, the interpoint distance in a given segment.

Let g(r) be a decreasing function on r'0 satisfying

(1) g(r)=0 rc g for some cg> 0

(2) smoothness assumptions on g as may be required.

A function g satisfying these requirements will be called an

influence function. [In practice we choose cg based on the
2g

variance a2 of the noise; for example

P(IXl-< ) = .75

where X is a N(0, 2 ) r.v. The influence function could take
2 2

the form g(r) = s(cg - r ) for Oirscg, and some s>OI].

We consider the following problem:

N
max E g( i 2 2)

( ,l (Xi Ca,.. (eN 8N)) iil

with E

=0 i=l,..., N



We fix 50 and solve for each i=l,...,N

( = min v'(xii 22vi( -a) +(y-) 2

with f(,ai,8 i ) = 0

The response function R( ) is defined by

N
R( ) = g(v

i=l

and the response set S(E) by

S* = {(a *, ) i=l,...,N: v*()< cg}
ii i g

We note that g(vi*()) is positive only if the distance from

the data point (xiy i ) to the curve is less than the threshold

value cg as defined in the influence function. We can then

expect R( ) to be maximal (locally) at the E's that fit the

largest proportion of the data set (x1,YI),..., (xNY N ). The

response sets S() at the maximal C's give the points of the

curve C that best approximate the image before the additive

noise. Recalling that we assumed the (a priori) knowledge of

the interpoint distance A we can use this as a basis for clustering

the response set S(4) into segments.

In the next section we examine three cases of paramerized

families of curves: linear, parabolic, and circular.

-'



§4. Examples

A. Line sements

As in [2] the parameter space is (q,y), e[-T,7T),

yE(- , ), where a line is defined by the equation

cos(Y)x + sin(Y)y - y = 0.

For each data point (x.,y.) we thus consider the problem

min[(c-x) 2 + (8yi)2]

with cos(p)a + sin(P)8 - y = 0.

By means of the Lagrange Multiplier Method we can show that

a sin2 ()x. - sin(Y)cos(P)yi + Ycos(Y)ti*= cos2 (y)yi - sin(T)cos(P)xi + ycos(Y)

vi ixicos(P) + yisin(Y) - 7y

In py--ctice, the parameter is discretized. For each data

point (xiYi) and each cp from the discretized set we compute

g(Ixicos(cP) + yisin((P) - YI) for all y such that Ixicos(y) +

yisin(y) - yl < cg. (thus we don't have to compute a value for

each (Y,y)). Summing all these contributions from all the

data points gives the response function R(C). After searching

the parameter space for the locally maximal C, we compute

the response set S(4). Let (a,a)r S(C). The transformation

sin(-Y) cos(-) 0

cos(Y)$ - sin(Y))

is used to transform the response set S(C) to the y-axis.

jj7
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A clustering procedure on R may then be used to find the

segments of f.

B. Circular segments

We consider the parameter space with elements (Y,y,p)

YE[-iT,7T), y>O, P> c specifying the curveg

(cos(y)x + sin(y)y - y) 2 + (cos(Y)y - sin(Y)x) 2 - p = 0

(the equation of the curve with center at polar coordinates

((o,y) and radius p). For each data point (xi,Yi) we then con-

sider the problem

min[(a-x) 2 + (-yi) 2]

with (cos(Y)a + sin(Y) - y)2 + (cos(Y)- sin()a) 2 - p = 0

It is easy to see (geometrically) that

(xi-ycos (y)) p
= + ycos()

1 /(xi-ycos (y)) 2+ (yi-ysin (Y) 2
12

(yi-ysin(y))p
=i*1= + ysin(y)

/(xi-ycos(y)) 2+(yi-ysin(Y)) 2

v i (xi-ysin(f)) 2+ (yi-y sin (Y)) 2 -

Points (xi,Yi ) with vi < cg give a positive contribution

to the response function R(Y,y,p) and thus

N
R(y,y,p) = E vi*(Y,y,p)

i=l

can be computed over the parameter space by fixing (Y,y) and

computing g(vi*(cp,y,p)) for which p satisfies v.*(Yyp) <

cg, P>c . As in the case of linear segments, after the local

maxima of R(Y,y,p) have been located, the response sets

locted repnest



S(Y,y,p) are computed for those particular values, and a

similar clustering (involving a decision procedure based on

the distribution of A, the interpoint distance) can be imple-

mented to extract segments.

C. Parabolic segments

The parameter space has elements (Y,y,a) YE[-r,Tr), Y¥0,

a>0 where a parabola is defined by
2

[cos((P)x + sin(Y)y] + sin(y)x - cos(cP)y + y = 0,

which is simply the fundamental parabola
2

x -y = 0

scaled by a, increased by y and rotated by Y. Thus for a

data point (xiy i ) we first transform

x. + cos(Y)x. + sin(')yi

Yi -sin(y)xi + cos(fl)y - y

and consider the problem

2

with =a 2

We form the Lagrangian

L = (a-x')2 + (-y!) 2 _ A(a 2).
1 I

The minimization results in the simultaneous equations

(c-x!) + Xua = 0

(-y.) - A = 0
i

= oa

Solving these we get

3 [l-2ay!] x!1 1
h(a) =a + I 1 0

2a 20y
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Then [ai*] will be a root of this equation, where

denotes the above transformation. Correspondingly [Bi*]' =

.(** 1 = (Xl_[ai,],)2 +(y!_[*,])2 ([ai*]' will be the

real root of h(a) = 0 that minimizes vi

No more will be said about searching for the local
N

maxima of R(Y,y,o) = E g(vi*( ,y,c)), but once the response
i=l

set {( *): i=l,...,N} corresponding to a particular para-

meter has been found, it will be necessary to perform a clus-

tering procedure to extract segments. We first transform the

response set to {([a i*]', [i*]'} using the transformation given

2
above, so the points lie on 8=ac 2

. By transforming the

parabola j=oa2 to the line y=O (preserving arc length) we can

use the same clustering procedure in the linear case. Such a

transformation [3] is given by (c,aa 2) - (s,0) where s =

sgn(a) (1/4o)[2aIc*+4jo2 + ln(2rcai+h/1+ 4 o212 )].



5. Conclusion

We have presented in this paper a procedure for fitting

curve segments to a data set when the curves originate from a

given parametric family. The method involves a transform into

the parameter space where the largest local maxima indicate the

best fitting curves to the data. The data points within a

threshold neighborhood of a given curve from the previous step

are projected onto the curve. The resulting point set can then

be clustered to extract curve segments. The parameter spaces

and basic computations for carrying out this procedure have

been done for linear, circular, and parabolic segments.

A survey of the many variants of the original Hough Transform

can be found in [4]. Basically, in these techniques the additive

noise (due to scatter) is taken care of in the quantization of

the parameter space. As noted in [5] this has led to unsatisfac-

tory results when random noise is not removed by the quantization

procedure, and a maximum entropy quantization is introduced (in

the case the noise distribution is known). In these methods,

after transforming and thresholding, a clustering procedure

is performed to extract the unknown curves. The method developed

in this paper is not as sensitive to how the parameter space is

quantized, and replaces clustering withthe problem of detecting

local maxima. Also included in [4] is a discussion of detection

of circular and parabolic segments, and the relationship of the

Hough Transform to template matching in the case where all the

curves to be detected are translations of each other.



A generalized Hough translorm is presented in [6], and its

equivalence to a formulation of the point pattern matching

problem is given. In this formulation a set of object points

OQRn , a set of feature points PQRm , and a set of parameterizedJ Rn
functions f R - Rm are given, and the problem is to find

f that maximizes the number of points in 0 that are mapped

onto points in P by f . The GHT procedure is to consider all

point pairs (o,p) oC0, pEP and compute all such that f (o) =

p (up to quantization level). In practice an array of accumu-

lators HT (one for each of the quantized parameter values) is

constructed, and HT(C) is incremented by unity, where C is an

outcome of the above computation. In the modified GHT we would

increment an accumulator by

g(d(o, {o: f (o) = p}))

where d is the infimum of the Euclidean distances from o to all

points o satisfying f (o) = p, and g is an influence function as

defined above.

iI
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